Four forces act on bolt A as shown; F1 150N, F2 80N, F3 110N and F4 100N. Determine the magnitude and direction of the resultant of the forces of the bolt, A.

Respuesta :

Complete Question

The  complete question(reference (chegg)) is shown on the first uploaded image

Answer:

The magnitude of the resultant force is  [tex]F = 199.64 \ N[/tex]

The  direction of the resultant force is  [tex]\theta = 4.1075^o[/tex] from the horizontal plane

Explanation:

Generally when resolving force, if the force (F )is moving toward the angle then the resolve force will be  [tex]Fcos(\theta )[/tex] while if the force is  moving away from the angle  then the resolved force is  [tex]Fsin (\theta )[/tex]

Now  from the diagram let resolve the forces to their horizontal component

    So

          [tex]\sum F_x = 150 cos(30) + 100cos(15) -80sin (20)[/tex]

          [tex]\sum F_x = 199.128 \ N[/tex]

Now  resolving these force into their vertical component can be mathematically evaluated as

         [tex]\sum F_{y} = 150 sin(30) - 100sin(15) -110 +80 cos(20)[/tex]

         [tex]\sum F_{y} = 14.30[/tex]

Now the resultant force is mathematically evaluated as

        [tex]F = \sqrt{F_x^2 + F_y^2}[/tex]

substituting values

        [tex]F = \sqrt{199.128^2 + 14.3^2}[/tex]

        [tex]F = 199.64 \ N[/tex]

The  direction of the resultant force is  evaluated as

       [tex]\theta = tan^{-1}[\frac{F_y}{F_x} ][/tex]

substituting values

       [tex]\theta = tan^{-1}[\frac{ 14.3}{199.128} ][/tex]

       [tex]\theta = 4.1075^o[/tex] from the horizontal plane

Ver imagen okpalawalter8