Respuesta :
Answer:
The ratio of the new force over the original force is 16
Explanation:
Recall the formula for the gravitational force between two masses M1 and M2 separated a distance D:
[tex]F_G=G\,\frac{M_1\,\,M_2}{D^2}[/tex]
So now, if the masses M1 and M2 are quadrupled and the distance stays the same, the new force becomes:
[tex]F'_G=G\,\frac{4M_1\,\,4M_2}{D^2}=G\,\frac{16\,\,M_1\,\,M_2}{D^2}=16\,\,G\,\frac{M_1\,\,M_2}{D^2}= 16\,\,F_G[/tex]
which is 16 times the original force.
So the ratio of the new force over the original force is 16
The ratio of the gravitational force between two planets if the masses of both planets are quadrupled but the distance between them stays the same is 16:1.
What does Newton's law of gravitation state?
Newton's law of gravitation states that any particle of matter in the universe attracts any other with a force varying directly as the product of the masses and inversely as the square of the distance between them.
The formula for Newton's law of gravitation is:
[tex]F = G \frac{m_1m_2}{r^{2} }[/tex]
where,
- F is the gravitational force.
- G is the gravitational constant.
- m₁ and m₂ are the masses of both objects.
- r is the distance between the objects.
The initial force between the planets is:
[tex]F_1 = G \frac{m_1m_2}{r^{2} }[/tex]
The force between the planets if the masses of both planets are quadrupled but the distance between them stays the same is:
[tex]F_2 = G \frac{4m_14m_2}{r^{2} } = 16 G \frac{m_1m_2}{r^{2} }[/tex]
The ratio of F₂ to F₁ is:
[tex]\frac{F_2}{F_1} =\frac{16 G \frac{m_1m_2}{r^{2} }}{G \frac{m_1m_2}{r^{2} }} = \frac{16}{1}[/tex]
The ratio of the gravitational force between two planets if the masses of both planets are quadrupled but the distance between them stays the same is 16:1.
Learn more about Newton's gravitational law here: https://brainly.com/question/9373839