Respuesta :
Answer:
The change in potential energy is [tex]\Delta PE = - 3.8*10^{-16} \ J[/tex]
Explanation:
From the question we are told that
The magnitude of the uniform electric field is [tex]E = 950 \ N/C[/tex]
The distance traveled by the electron is [tex]x = 2.50 \ m[/tex]
Generally the force on this electron is mathematically represented as
[tex]F = qE[/tex]
Where F is the force and q is the charge on the electron which is a constant value of [tex]q = 1.60*10^{-19} \ C[/tex]
Thus
[tex]F = 950 * 1.60 **10^{-19}[/tex]
[tex]F = 1.52 *10^{-16} \ N[/tex]
Generally the work energy theorem can be mathematically represented as
[tex]W = \Delta KE[/tex]
Where W is the workdone on the electron by the Electric field and [tex]\Delta KE[/tex] is the change in kinetic energy
Also workdone on the electron can also be represented as
[tex]W = F* x *cos( \theta )[/tex]
Where [tex]\theta = 0 ^o[/tex] considering that the movement of the electron is along the x-axis
So
[tex]\Delta KE = F * x cos (0)[/tex]
substituting values
[tex]\Delta KE = 1.52 *10^{-16} * 2.50 cos (0)[/tex]
[tex]\Delta KE = 3.8*10^{-16} J[/tex]
Now From the law of energy conservation
[tex]\Delta PE = - \Delta KE[/tex]
Where [tex]\Delta PE[/tex] is the change in potential energy
Thus
[tex]\Delta PE = - 3.8*10^{-16} \ J[/tex]