find the local and/or absolute extrema for the function over the specified domain. (Order your answers from smallest to largest x.) f(x)

Respuesta :

Answer:

Minimum 8 at x=0, Maximum value: 24 at x=4

Step-by-step explanation:

Retrieving data from the original question:

[tex]f(x)=x^{2}+8\:over\:[-1,4][/tex]

1) Calculating the first derivative

[tex]f'(x)=2x[/tex]

2) Now, let's work to find the critical points

Set this

[tex]2x=0\\x=0[/tex]    

0, belongs to the interval. Plug it in the original function

[tex]f(0)=(0)^2+8\\f(0)=8[/tex]

3)  Making a table x, f(x) then compare

x|  f(x)

-1 | f(-1)=9  

0 | f(0)=8   Minimum

4 | f(4)=24 Maximum

4) The absolute maximum value is 24 at x=4 and the absolute minimum value is 8 at x=0.    

Ver imagen profantoniofonte