Respuesta :

Answer:

[tex]3x^2-10x+8=(x-x_1)(x-x_2)=(x-2)(x-\frac{4}{3})[/tex]

Step-by-step explanation:

The general form of a quadratic polynomial is given by:

[tex]ax^2+bx+c[/tex]    (1)

You have the following polynomial:

[tex]3x^2-10x+8[/tex]    (2)

In order to complete the factorization you can use the quadratic formula, to obtain the roost of the polynomial. The quadratic formula is given by:

[tex]x_{1,2}=\frac{-b\pm \sqrt{b^2-4ac}}{2a}[/tex]    (3)

By comparing the equation (1) with the equation (2) you obtain:

a = 3

b = -10

c = 8

Then, you replace these values in the equation (3):

[tex]x_{1,2}=\frac{-(-10)\pm \sqrt{(-10)^2-4(3)(8)}}{2(3)}\\\\x_{1,2}=\frac{10\pm2}{6}\\\\x_1=2\\\\x_2=\frac{4}{3}[/tex]

Then, the factorization of the polynomial is:

[tex]3x^2-10x+8=(x-x_1)(x-x_2)=(x-2)(x-\frac{4}{3})[/tex]