Answer: 2.4
Explanation:
cylinder moment of inertia = Iₔ = ½mrₔ² = ½2.84²
spherical shell moment of Iₑ = (2/3)mrₑ² = (2/3)6.47²
let the cylinder's angular speed be ωₔ and the spherical shell angular speed = ωₑ
total k.e = rotational k.e + linear k.e
for cylinder = ½Iₔωₔ² + ½mωₔ²rₔ² ---------------> [vₔ = rₔωₔ]
for sphere = ½Iₑωₑ² + ½mωₑ²rₑ²
=> ratio = 1
=> ωₔ²[½2.84² + 2.84²] / {ωₑ²[(2/3)6.47² + 6.47²]} = 1
ωₔ²(12.0894) = ωₑ²(69.7682)
(ωₔ/ωₑ)² = [69.7682] / [12.0894] ~= 5.77
=> (ωₔ/ωₑ) = √(5.77) = 2.4