Respuesta :
remember
(x^m)(x^n)=x^(m+n)
and
[tex] \sqrt[n]{x^m} =x^{ \frac{m}{n} }[/tex] so
[tex] (\sqrt[7]{x^5})(\sqrt[7]{x^5}) [/tex] =
[tex] (x^{ \frac{5}{7})(x^{ \frac{5}{7}) }[/tex] =
[tex] x^(\frac{5}{7}+\frac{5}{7}) [/tex] =
[tex] x^(\frac{10}{7}) [/tex]=
[tex](x^ \frac{7}{7} )(x^ \frac{3}{7}) [/tex]=
(x)([tex]x^ \frac{3}{7} [/tex]=
[tex]x \sqrt[7]{x^3} [/tex]
(x^m)(x^n)=x^(m+n)
and
[tex] \sqrt[n]{x^m} =x^{ \frac{m}{n} }[/tex] so
[tex] (\sqrt[7]{x^5})(\sqrt[7]{x^5}) [/tex] =
[tex] (x^{ \frac{5}{7})(x^{ \frac{5}{7}) }[/tex] =
[tex] x^(\frac{5}{7}+\frac{5}{7}) [/tex] =
[tex] x^(\frac{10}{7}) [/tex]=
[tex](x^ \frac{7}{7} )(x^ \frac{3}{7}) [/tex]=
(x)([tex]x^ \frac{3}{7} [/tex]=
[tex]x \sqrt[7]{x^3} [/tex]
The mathematical expression of the given above is,
(x^1/7)^5 x (x^17)^5
Take note that for (x^n)^m, the answer is x^nm. For our expression above,
(x^5/7) x (x^5/7)
Another rule for exponent is that for (x^n) x (x^m) the answer would be x^(n + m). For the expression,
x^10/7
(x^1/7)^5 x (x^17)^5
Take note that for (x^n)^m, the answer is x^nm. For our expression above,
(x^5/7) x (x^5/7)
Another rule for exponent is that for (x^n) x (x^m) the answer would be x^(n + m). For the expression,
x^10/7