Respuesta :

Answer:

1. Axis of symmetry: x = 3

2. Vertex: (3,5)

3. Solution of the equation:

  • x-intercepts:

               [tex](3-\sqrt{5},0) \\\\(3+\sqrt{5},0)[/tex]

  • y-intercept: (0, -4)

Explanation:

1. Equation:

    [tex]y=-x^2+6x-4[/tex]

2. Axis of symmetry:

That is the equation of a parabola, whose standard form is:

                 [tex]y=ax^2+bx+c[/tex]

Where:    

                 [tex]a=-1;b=6;c=-4[/tex]

The axis of symmetry is the vertical line with equation:

               [tex]x=-b/2a[/tex]

Substitute  [tex]a=-1,\text{ and }b=6[/tex]

          [tex]x=-6/[(2)(-1)]=-6/(-2)=3[/tex]

Thus, the axis of symmetry is:

            [tex]x=3[/tex]

3. Vertex

The x-coordinate of the vertex is equal to the axys of symmetry, i.e x = 3.

To find the y-xoordinate, substitute this value of x into the equation for y:

               [tex]y=-x^2+6x-4\\\\y=-(3)^2+6(3)-4=-9+18-4=5[/tex]

Therefore, the vertex is (3, 5)

4. Find the x-intercepts

The x-intercepts are the roots of the equation, which are the points wher y = 0.

        [tex]y=-x^2+6x-4=0[/tex]

Use the quadratic equation:

       [tex]x=\frac{-b\pm \sqrt{b^2-4ac} }{2a} \\\\x=\frac{-6\pm\sqrt{(-6)^2-4(-1)(-4)} }{2(-1)}\\\\x_1=3-\sqrt{5} \\\\x_2=3+\sqrt{5}[/tex]

5. Find the y-intercept

The y-intercet is the value of y when x=0:

         [tex]y=-x^2+6x-4\\\\y=-(0)^2+6(0)-4=-4[/tex]