Respuesta :
Answer:
3 2/3 ft to the right
Explanation:
The picture of the question in the attached figure N 1
To better understand the problem see that attached figure with letters N 2
we know that
If two figures are similar, then the ratio of its corresponding sides is proportional
In this problem
Triangle A.D.F is similar to Triangle B.D.E ----> by AA Similarity Theorem
so
[tex]\frac{A.F}{B.E}=\frac{F.D}{E.D}[/tex]
we have
[tex]A.F=15\ ft\\B.E=6\ ft\\F.D=(10+E.D)\ ft[/tex]
substitute
[tex]\frac{15}{6}=\frac{10+E.D}{E.D}[/tex]
solve for E.D
[tex]15E.D=60+6E.D\\9E.D=60\\\\E.D=\frac{20}{3}\ ft[/tex]
E.D is the length of the shadow
so
The person should move to the right x feet
[tex]x=\frac{20}{3}-3\\\\x=\frac{11}{3}\ ft[/tex]
convert to mixed number
[tex]\frac{11}{3}\ ft=\frac{9}{3}+\frac{2}{3}=3\frac{2}{3}\ ft[/tex]

