Respuesta :

Answer:

Part 1) [tex]BC=18\ in[/tex]

Part 2) [tex]AC=24\ in[/tex]

Part 3) [tex]AB=30\ in[/tex]

Step-by-step explanation:

see the attached figure to better understand the problem

step 1

Find BC

we know that

In the right triangle ABC

[tex]sin(A)=\frac{BC}{AB}[/tex] ----> by SOH (opposite side divided by the hypotenuse)

we have

[tex]AB=30\ in[/tex] ----> the hypotenuse (greater side)

substitute the given values

[tex]\frac{3}{5}=\frac{BC}{30}[/tex]

[tex]BC=\frac{3}{5}(30)=18\ in[/tex]

step 2

Find AC

In the right triangle ABC

Applying the Pythagorean Theorem

[tex]AB^2=BC^2+AC^2[/tex]

substitute the given values

[tex]30^2=18^2+AC^2[/tex]

[tex]AC^2=30^2-18^2[/tex]

[tex]AC^2=576\\AC=24\ in[/tex]

Ver imagen calculista