Answer:
[tex]\large \boxed{\text{35 gal/min and 20 gal/min}}[/tex]
Step-by-step explanation:
Let x = the Alexander flow rate
and y = the Anderson flow rate
You have two conditions:
[tex]\begin{array}{lccc}(1) & 30x + 20 y & = & 1450 \\(2) & x + y & = & 55\\\end{array}[/tex]
Solve the equations for x and y
[tex]\begin{array}{rccrl}(3)\qquad \qquad\qquad \quad y & = & 55 - x & \text{Subtracted x from each side of (2)}\\\30x + 20(55 - x)& = &1450 &\text{Substituted (3) into (1)}\\30x +1100 - 20x & = &1450 &\text{Distributed the 20}\\10x + 1100 & = & 1450 & \text{Simplified}\\10x & = &350&\text{Subtracted 1100 from each side} \\\end{array}\\[/tex]
[tex]\begin{array}{rcrl}(4) \qquad \qquad\qquad \quad x & = &\mathbf{35}&\text{Divided each side by 10} \\35 + y & = &55&\text{Substituted (4) into (2)} \\y & = &\mathbf{20}&\text{Subtracted 35 from each side2} \\\end{array}\\\text{The Alexander and Anderson sprinkler flow rates are}\\\large \boxed{\textbf{35 gal/min and 20 gal/min}}[/tex]
Check:
[tex]\begin{array}{rcrl}30(35) +20(20)= 1455 & \qquad & 35 + 20 = 55\\1050 + 400 =1450 & \qquad & 55 = 55\\1450 = 1450& \qquad &\\\end{array}[/tex]
OK.