You want to fill the cylinder shown below with water. All you have is a container shaped like a cone with a radius of 3 inches and a height of 7 inches; you can use this cone-shaped container to take water from a faucet and fill the cylinder. How many cones will it take to fill the cylinder? Explain your reasoning.

Respuesta :

Answer:

n = 9.14 ≈ 10 cones ( if integer is required )

Step-by-step explanation:

Given:

- The dimensions of the cylinder "missing from this question" are:

                          Radius r_1 = 8 in , Height h_1= 3 in

- The dimensions of faucet are :

                          Radius r_2 = 3 in , Height h_2 = 7 in

Find:

- How many cone shaped like containers are required to fill the cylinder.

Solution:

- We will denote the letter 'n' as the number of cone shaped containers.

- For n amount of cone shaped containers is to fill the container the volume of water of n container should equal the volume of water in cylinder. This can be expressed as follows:

                                       n*V_cone = V_cylinder

- Where,

               V_cone = ( 1 / 3 ) * pi * r^2 _2 * h_2

               V_cylinder = pi*r^2_1*h_1

- Hence,

                                      n = V_cylinder/ V_cone

Plug in values:

                                      n = (3*r^2_1 *h_1 )/ r^2_2 *h_2

                                      n = ( 3 * 8^2 * 3 ) / ( 3^2 * 7)

                                      n = 576 / 63 = 9.14 cones

Answer:                         n = 10 cones