Respuesta :

The value of the expression is [tex]8.8 \times 10^{-2}[/tex].

Solution:

Given expression:

[tex]$\frac{\left(4.8 \times 10^{8}\right)}{\left(1.2 \times 10^{4}\right)} \times\left(2.2 \times 10^{-6}\right)[/tex]

To find the value of the given expression:

Using exponent rule: [tex]a^m\times a^n=a^{m+n}[/tex]

[tex]$\Rightarrow\frac{\left(4.8 \times 10^{8-6}\right)}{\left(1.2 \times 10^{4}\right)} \times\left(2.2 \right)[/tex]

[tex]$\Rightarrow\frac{\left(4.8 \times 10^{2}\right)}{\left(1.2 \times 10^{4}\right)} \times\left(2.2 \right)[/tex]

Using exponent rule: [tex]\frac{a^m}{a^n} =a^{m-n}[/tex]

[tex]$\Rightarrow\frac{\left(4.8 \times 10^{2-4}\right)}{1.2} \times 2.2[/tex]

[tex]$\Rightarrow\frac{\left(4.8 \times 10^{-2}\right)}{1.2} \times 2.2[/tex]

Since [tex]\frac{4.8}{1.2}=4[/tex]

[tex]$\Rightarrow(4 \times 10^{-2})\times 2.2[/tex]

[tex]$\Rightarrow 8.8 \times 10^{-2}[/tex]

Hence the value of the expression is [tex]8.8 \times 10^{-2}[/tex].