Find the value of the expression below. Express your answer in scientific notation.

The value of the expression is [tex]8.8 \times 10^{-2}[/tex].
Solution:
Given expression:
[tex]$\frac{\left(4.8 \times 10^{8}\right)}{\left(1.2 \times 10^{4}\right)} \times\left(2.2 \times 10^{-6}\right)[/tex]
To find the value of the given expression:
Using exponent rule: [tex]a^m\times a^n=a^{m+n}[/tex]
[tex]$\Rightarrow\frac{\left(4.8 \times 10^{8-6}\right)}{\left(1.2 \times 10^{4}\right)} \times\left(2.2 \right)[/tex]
[tex]$\Rightarrow\frac{\left(4.8 \times 10^{2}\right)}{\left(1.2 \times 10^{4}\right)} \times\left(2.2 \right)[/tex]
Using exponent rule: [tex]\frac{a^m}{a^n} =a^{m-n}[/tex]
[tex]$\Rightarrow\frac{\left(4.8 \times 10^{2-4}\right)}{1.2} \times 2.2[/tex]
[tex]$\Rightarrow\frac{\left(4.8 \times 10^{-2}\right)}{1.2} \times 2.2[/tex]
Since [tex]\frac{4.8}{1.2}=4[/tex]
[tex]$\Rightarrow(4 \times 10^{-2})\times 2.2[/tex]
[tex]$\Rightarrow 8.8 \times 10^{-2}[/tex]
Hence the value of the expression is [tex]8.8 \times 10^{-2}[/tex].