Find the Cartesian components of force PP acting in the x, y, and z directions given P=50.0 NP=50.0 N, α=143.5∘α=143.5∘, β= 70.0∘β= 70.0∘, and γ=60.9∘γ=60.9∘. Recall that αα is the angle between the vector and the x axis, ββ is the angle between the vector and the y axis, and γγ is the angle between the vector and the z axis.

Respuesta :

Answer:

vec(F) = [ -40.193 i + 17.101 j + 24.317 k ]

Explanation:

Given:

-The force P = 50.0 N

- Angle with x-axis α = 143.5

- Angle with y-axis β = 70.0

- Angle with z-axis γ = 60.9

Find:

Find the Cartesian components of force P acting in the x, y, and z directions,

Solution:

- The Force vector in the Cartesian coordinate system is given by the dot product of the Force P and the unit vector in its direction.

                                    F.unit(u) = vec(F)

- Where, the unit vector is defined as:

                      unit (u) = [ cos(α) i + cos(β) j + cos(γ) k ]

- Using the given unit angles α , β, and γ compute unit (u):

                      unit (u) = [ cos(143.5) i + cos(70) j + cos(60.9) k ]  

                      unit (u) = [ -0.80386 i + 0.34202 j + 0.48634 k ]

- The force vector is:

                      vec(F) =  50.[ -0.80386 i + 0.34202 j + 0.48634 k ]

                      vec(F) = [ -40.193 i + 17.101 j + 24.317 k ]