Answer:
The dimensions of the original rectangle are:
Length 11 cm
Width 6 cm
Step-by-step explanation:
Let
x ----> the original length
y ----> the original width
we know that
The original area is
[tex]A_1=xy[/tex] ----> equation A
[tex]x=y+5[/tex] ----> equation B
The new area is
[tex]A_2=(x+3)(y+2)[/tex] ----> equation C
[tex]A_2=A_1+46[/tex] ----> equation D
substitute equation A and equation C in equation D
[tex](x+3)(y+2)=xy+46[/tex] ----> equation E
substitute equation B in equation E
[tex](y+5+3)(y+2)=(y+5)y+46[/tex]
solve for y
([tex]y+8)(y+2)=y^2+5y+46[/tex]
[tex]y^2+10y+16=y^2+5y+46[/tex]
[tex]10y-5y=46-16\\5y=30\\y=6\ cm[/tex]
Find the value of x
[tex]x=6+5=11\ cm[/tex]
therefore
The dimensions of the original rectangle are:
Length 11 cm
Width 6 cm