contestada

A hunter aims at a deer which is 40 yards away. Her cross- bow is at a height of 5ft, and she aims for a spot on the deer 4ft above the ground. The crossbow fires her arrows at 300ft/s. (a) At what angle of elevation should she hold the cross- bow to hit her target? (b) If the deer is moving perpendicularly to her line of sight at a rate of 20mph, by approximately how much should she lead the deer in order to hit it in the de- sired location?

Respuesta :

Answer:

a)  θ₁ = 0.487º , b)   t = 0.400 s ,        x = 11.73 ft

Explanation:

For this exercise let's use the projectile launch relationships.

The initial height is I = 5 ft and the final height y = 4 ft

            y = y₀ + [tex]v_{oy}[/tex] t - ½ g t²

The distance to the band is x = 40 yard (3 ft / 1 yard) = 120 ft

            x = v₀ₓ t

            t = x / v₀ₓ

We replace

             y –y₀ = v_{oy} x / v₀ₓ - ½ g x² / v₀ₓ²

             v_{oy} = v₀ sin θ

             v₀ₓ = vo cos θ

             

             y –y₀ = x tan θ - ½ g x² / v₀² cos² θ

                5-4 = 120 tan θ - ½ 32 120 / (300 2 cos2 θ)

                1 = 120 tan θ - 0.0213 sec² θ

Let's use the trigonometry relationship

               Sec² θ = 1 - tan² θ

                 1 = 120 tan θ - 0.0213 (1 –tan²θ)

                 0.0213 tan²θ + 120 tanθ -1.0213 = 0

                 

We change variables

          u = tan θ

          u² + 5633.8 u - 48.03 = 0

We solve the second degree equation

          u = [-5633.8 ±√(5633.8 2 + 4 48.03)] / 2

          u = [- 5633.8 ± 5633.82] / 2

           u₁ = 0.0085

           u₂= -5633.81

           u = tan θ

           θ = tan⁻¹ u

For u₁

           θ₁ = tan⁻¹ 0.0085

           θ₁ = 0.487º

For u₂

           θ₂ = -89.99º

The launch angle must be 0.487º

b) let's look for the time it takes for the arrow to arrive

         x = v₀ₓ t

         t = x / v₀ cos θ

         

         t = 120 / (300 cos 0.487)

         t = 0.400 s

The deer must be at a distance of

           v = 20 mph (5280 ft / 1 mi) (1 h / 3600s) = 29.33 ft / s

           x = v t

           x = 29.33 0.4

           x = 11.73 ft