Use the given conditions to write an equation for the line in​ point-slope form and general form. Passing through (8 comma negative 8 )(8,−8) and perpendicular to the line whose equation is x minus 5 y minus 6 equals 0

Respuesta :

Answer:

The answer to your question is   y = -5x + 32          point-slope form

                                                      5x + y - 32 = 0      general form

Step-by-step explanation:

Data

(8, -8)

⊥ x - 5y - 6 = 0

Process

1.- Get the slope of the line given

   x - 5y - 6 = 0

   -5y = -x + 6

      y = -x/-5 + 6/-5

      y = x/5 - 6/5

slope = 1/5

slope of the new line -5, because the lines are perpendicular

2.- Get the equation of the new line

          y - y1 = m(x - x1)

          y + 8 = -5(x - 8)

          y + 8 = -5x + 40

          y = -5x + 40 - 8

         y = -5x + 32          point-slope form

Equal to zero to find the general form

         5x + y - 32 = 0      general form