Respuesta :

Answer:

Explanation:

Given

Position of Particle is given by

[tex]r(t)=t^3\hat{i}+\8t^2\hat{j}+t^3\hat{k}[/tex]

Velocity is given by

[tex]\frac{\mathrm{d} r(t)}{\mathrm{d} t}=v(t)[/tex]

[tex]v(t)=3t^2\hat{i}+\16t\hat{j}+3t^2\hat{k}[/tex]

acceleration is given by

[tex]a(t)=\frac{\mathrm{d} v}{\mathrm{d} t}[/tex]

[tex]a(t)=6t\hat{i}+\16\hat{j}+6t\hat{k}[/tex]

Force is given by

[tex]F=m\times a[/tex]

[tex]F=m\cdot \left ( 6t\hat{i}+\16\hat{j}+6t\hat{k}\right )[/tex]

Answer:

F= m ( 6 t i + 18 j  + 6 t k)

Explanation:

 Given that

mass of the particle =m

The position of the particle

r=t³ i + 8 t² j +t³ k

We know that velocity of the particle is given as

[tex]v=\dfrac{dr}{dt}[/tex]

v=3  t² i + 18 t j +3  t² k

Now the acceleration of the particle

[tex]a=\dfrac{dv}{dt}[/tex]

a= 6 t i + 18 j  + 6 t k

Therefore the force F

F= m a

F= m ( 6 t i + 18 j  + 6 t k)

The force required will be

F= m ( 6 t i + 18 j  + 6 t k)