Based on the model ​N(11541154​,8686​) describing steer​ weights, what are the cutoff values for ​a) the highest​ 10% of the​ weights? ​a) the lowest​ 20% of the​ weights? ​b) the middle​ 40% of the​ weights? ​c) The cutoff weight for the highest​ 10% of the steer weights is nothing pounds.

Respuesta :

Answer:

a) x = 1225.68

b) x = 1081.76

c)  1109.28 < x < 1198.72

Step-by-step explanation:

Given:

- Th random variable X for steer weight follows a normal distribution:

                                    X~ N( 1154 , 86 )

Find:

a) the highest​ 10% of the​ weights? ​

b) the lowest​ 20% of the​ weights? ​

c) the middle​ 40% of the​ weights? ​

Solution:

a)

We will compute the corresponding Z-value for highest cut off 10%:

                                   Z @ 0.10 = 1.28

                                    Z = (x-u) / sd

Where,

u: Mean of the distribution.

s.d: Standard deviation of the distribution.

                                   1.28 = (x - 1154) / 86

                                      x = 1.28*86 + 1154

                                      x = 1225.68

b)

We will compute the corresponding Z-value for lowest cut off 20%:

                                   -Z @ 0.20 = -0.84

                                    Z = (x-u) / sd

                                   -0.84 = (x - 1154) / 86

                                      x = -0.84*86 + 1154

                                      x = 1081.76

c)

We will compute the corresponding Z-value for middle cut off 40%:

                                    Z @ 0.3 = -0.52

                                    Z @ 0.7 = 0.52

                                    x@0.3 < x < x@0.7

                       -.52*86 + 1154 < x < 0.52*86 + 1154

                                  1109.28 < x < 1198.72

Using the normal distribution, it is found that:

a) The cutoff for the highest 10% of pounds is of 1264.

b) The cutoff for the lowest 20% of weights is of 1082.

c) The cutoff weights for the middle 40% of weights are 1109 and 1199.

Normal Probability Distribution

In a normal distribution with mean [tex]\mu[/tex] and standard deviation [tex]\sigma[/tex], the z-score of a measure X is given by:

[tex]Z = \frac{X - \mu}{\sigma}[/tex]

  • It measures how many standard deviations the measure is from the mean.
  • After finding the z-score, we look at the z-score table and find the p-value associated with this z-score, which is the percentile of X.

In this problem:

  • The mean is of [tex]\mu = 1154[/tex].
  • The standard deviation is of [tex]\sigma = 86[/tex].

Item a:

The cutoff for the highest​ 10% of the​ weights is the 100 - 10 = 90th percentile, which is X when Z has a p-value of 0.9, so X when Z = 1.28, hence:

[tex]Z = \frac{X - \mu}{\sigma}[/tex]

[tex]1.28 = \frac{X - 1154}{86}[/tex]

[tex]X - 1154 = 1.28(86)[/tex]

[tex]X = 1264[/tex]

The cutoff for the highest 10% of pounds is of 1264.

Item b:

The cutoff for the lowest 20% of weights is the 20th percentile, which is X when Z = -0.84, hence:

[tex]Z = \frac{X - \mu}{\sigma}[/tex]

[tex]-0.84 = \frac{X - 1154}{86}[/tex]

[tex]X - 1154 = -0.84(86)[/tex]

[tex]X = 1082[/tex]

The cutoff for the lowest 20% of weights is of 1082.

Item c:

The middle 40% is between the 30th percentile and the 70th percentile, due to the symmetry of the normal distribution, hence:

30th percentile:

[tex]Z = \frac{X - \mu}{\sigma}[/tex]

[tex]-0.525 = \frac{X - 1154}{86}[/tex]

[tex]X - 1154 = -0.525(86)[/tex]

[tex]X = 1109[/tex]

70th percentile:

[tex]Z = \frac{X - \mu}{\sigma}[/tex]

[tex]0.525 = \frac{X - 1154}{86}[/tex]

[tex]X - 1154 = 0.525(86)[/tex]

[tex]X = 1199[/tex]

The cutoff weights for the middle 40% of weights are 1109 and 1199.

More can be learned about the normal distribution at https://brainly.com/question/24663213