Respuesta :

gmany

Answer:

neither

Step-by-step explanation:

If AB an CD are parallel, then their slopes are the same.

If AB and CD are perpendicular, then the product of their slopes is equal -1.

The formula of a slope:

[tex]m=\dfrac{y_2-y_1}{x_2-x_1}[/tex]

Calculate the both slope:

[tex]A(4,\ 2),\ B(-3,\ 1)\\\\m_{AB}=\dfrac{1-2}{-3-4}=\dfrac{-1}{-7}=\dfrac{1}{7}\\\\C(6,\ 0),\ D(-10,\ 8)\\\\m_{CD}=\dfrac{8-0}{-10-6}=\dfrac{8}{-16}=-\dfrac{1}{2}\\\\=============================[/tex]

[tex]m_{AB}\neq m_{CD}[/tex]

The line AB and line CD are not parallel

[tex]m_{AB}\cdot m_{CD}=\left(\dfrac{1}{7}\right)\left(-\dfrac{1}{2}\right)=-\dfrac{1}{14}\neq-1[/tex]

The line AB and line CD are not perpendicular.