Answer:
[tex]T_{surr}=296.289\ K[/tex]
In Celsius:
[tex]T_{surr}=296.289-273\\T_{surr}=23.289^oC[/tex]
Explanation:
The formula we are going to use is:
[tex]\dot Q_{rad}=\epsilon\sigma A_s(T_s^4-T_{surr}^4)[/tex]
Where:
ε is the emissivity
σ is the Stefan constant
[tex]T_s[/tex] is the final temperature of surrounding surfaces
[tex]T_{surr}[/tex] is the required temperature
[tex]A_s[/tex] is the are of surrounding surface
Calculating The area:
[tex]A_s=(0.4)(0.4)+4(0.4)(0.2)\\A_s=0.48\ m^2[/tex]
σ= [tex]5.67*10^{-8}\ W/m^2.K^4[/tex]
ε =0.95
[tex]T_s[/tex]=55+273
[tex]T_s[/tex]=328 K
[tex]\dot Q_{rad[/tex]=100 W
[tex]100=0.95(5.67*10^{-8})(0.48)(328^4-T_{surr}^4)\\3867693926=(328^4-T_{surr}^4)\\T_{surr}^4=7706623130\\T_{surr}=296.289\ K[/tex]
In Celsius:
[tex]T_{surr}=296.289-273\\T_{surr}=23.289^oC[/tex]