Explain how to solve 4^x+3 = 7 using the change of base formula log base b of y equals log y over log b. Include the solution for x in your answer. Round your answer to the nearest thousandth.

Respuesta :

The value of x is 1

Explanation:

The equation is [tex]4^x+3=7[/tex]

Subtracting both sides by 3, we get,

[tex]4^x=4[/tex]

Taking log on both sides, we get,

[tex]\log 4^{x}=\log 4[/tex]

Rewriting the equation by [tex]4^{x}=u[/tex]

Thus, we have,

[tex]\log u=\log 4[/tex]

Applying log rule, if [tex]\log f(x)=\log g(x)[/tex], then [tex]f(x)=g(x)[/tex]

Thus, [tex]u=4[/tex]

Substituting [tex]u=4[/tex] in [tex]4^{x}=u[/tex], we get,

[tex]4^x=4[/tex]

Also, since, [tex]a^{f(x)}=a^{g(x)}[/tex], then [tex]f(x)=g(x)[/tex]

Thus, [tex]x=1[/tex]

Hence, the value of x is 1