A heater coil connected to 240-Vrms ac line has a resistance of 31 Ω . Part APart complete What is the average power used? Express your answer to two significant figures and include the appropriate units. P¯¯¯¯ = 1900 W Previous Answers Correct Part B What is the maximum value of the instantaneous power?

Respuesta :

Answer:

a) 1857.6 W

b) 3713.036 W          

Explanation:

Given:

[tex]V_{rms}=240V\\R=31\Omega[/tex]

Average current, [tex]I=\frac{240V}{31\Omega}=7.74 A[/tex]

Average power, [tex]P=VI=240\times 7.74=1857.6W[/tex]

Peak current:

[tex]I_p=\sqrt2 I\\I_p=\sqrt 2 \times 7.74=10.94A\\[/tex]

Peak Voltage:

[tex]V_p=\sqrt2 V\\V_p=\sqrt2 \times 240 =339.4 V[/tex]

Maximum value of instantaneous Power is

[tex]P_{max}=I_p\times V_p\\P_{max}=10.94\times 339.4 = 3713.036 W[/tex]

The average power be "1857.6 W" and the max value of the instantaneous power be "3713.036 W".

Current and Power:

Given values are:

Resistance, [tex]R = 31 \ \Omega[/tex]

Voltage, [tex]V_{rms} = 240 \ V[/tex]

The average current be:

→ [tex]I = \frac{240}{31}[/tex]

     [tex]= 7.74 \ A[/tex]

PART-A:

The average power be:

→ [tex]P= VI[/tex]

      [tex]= 240\times 7.74[/tex]

      [tex]= 1857.6 \ W[/tex]

Now,

The peak current be:

→ [tex]I_p = \sqrt{2 }I[/tex]

       [tex]= \sqrt{2}\times 7.74[/tex]

       [tex]= 10.94 \ A[/tex]

The peak voltage be:

→ [tex]V_p = \sqrt{2} V[/tex]

        [tex]= \sqrt{2}\times 240[/tex]

        [tex]= 339.4 \ V[/tex]

PART-B:

The max. value of instantaneous power be:

→ [tex]P_{max} = I_p\times V_p[/tex]

            [tex]= 10.94\times 339.4[/tex]

            [tex]= 3713.036 \ W[/tex]

Thus the answer above is right.  

Find out more information about power here:

https://brainly.com/question/24858512