Respuesta :
Answer:
0.0658 M
Explanation:
The reaction that takes place is:
Na₂SO₄(aq) + BaCl₂(aq) ↔ BaSO₄(s) + 2NaCl(aq)
First we calculate the number of Na₂SO₄ moles:
- 0.4000 g sample * 96.4/100 = 0.3856 g Na₂SO₄
- 0.3856 g Na₂SO₄ ÷ 142.04 g/mol = 2.715x10⁻³ mol Na₂SO₄
Now we convert to moles of BaCl₂:
- 2.715x10⁻³ mol Na₂SO₄ * 1 molBaCl₂/1 molNa₂SO₄ = 2.715x10⁻³ mol BaCl₂
Finally we divide by the volume to calculate the molarity:
- 41.25 mL ⇒ 41.25 / 1000 = 0.04125 L
- 2.715x10⁻³ mol BaCl₂ / 0.04125 L = 0.0658 M
The molarity of [tex]BaCl_{2}[/tex] solution would be as follows:
[tex]0.0658 M[/tex]
Given that
Reaction:
[tex]Na_{2} SO_{4}(aq) + BaCl_{2}(aq)[/tex] → [tex]BaSO_{4}(s) + 2NaCl(aq)[/tex]
To find the moles of [tex]Na_{2}SO_{4}[/tex],
[tex]= 0.4000g[/tex] × [tex]96.4/100[/tex]
[tex]= 0.3856[/tex]
[tex]0.3856[/tex] ÷ [tex]142.04[/tex]
[tex]= 2.715[/tex] × [tex]10^-3 mol[/tex] [tex]Na_{2}SO_{4}[/tex],
Now,
The moles of [tex]BaCl_{2}[/tex]
[tex]= 2.715[/tex] × [tex]10^-3[/tex] mol [tex]Na_{2}SO_{4}[/tex], × 1 mol [tex]BaCl_{2}[/tex]/1 mol [tex]Na_{2}SO_{4}[/tex],
[tex]= 2.715[/tex] × [tex]10^-3[/tex] mol [tex]BaCl_{2}[/tex]
Mortality of the[tex]BaCl_{2}[/tex] solution:
[tex]41.25 mL[/tex] ⇒
[tex]41.25 / 1000 \\= 0.04125 L[/tex]
[tex]= 2.715[/tex] × [tex]10^-3[/tex] mol [tex]BaCl_{2}[/tex] /[tex]0.04125 L[/tex]
[tex]= 0.0658 M[/tex]
Learn more about "Molarity" here:
brainly.com/question/8732513
