The pear company sells pphones. The cost to manufacture x pPhones is C(x)= -21x^2+52000x+21087 dollars (this includes overhead costs and production costs for each pphones). If the company sells x pphones for the maximum price they can fetch, the revenue function will be R(x)= -27x2+19600x dollars. How many pphones should the pear company produce and sell to maximize profit?

Respuesta :

Answer:

2,700 phones should the pear company produce and sell to maximize profit.

Step-by-step explanation:

The cost to manufacture x phones :

[tex]C(x)= -21x^2+52,000x+21,087[/tex]

The revenue function will be :

[tex]R(x)= -27x^2+19,600x[/tex]

The profit = P(x) = R(x) - C(x)

[tex]P(x)=(-27x^2+19,600x)-(-21x^2+52,000x+21,087)[/tex]

[tex]P(x)=-6x^2+32,400x-21,087[/tex]

Differentiating P(x) with respect to dx;

[tex]\frac{d(P(x))}{dx}=\frac{d(-6x^2+32,400x-21,087)}{dx}[/tex]

[tex]\frac{d(P(x))}{dx}=-12x+32,400[/tex]

[tex]\frac{d(P(x))}{dx}=0[/tex]

[tex]0=-12x+32,400[/tex]

[tex]12x=32,400[/tex]

x = 2,700

Differentiating [tex]\frac{d(P(x))}{dx}[/tex] with respect to dx again;

[tex]\frac{d^2(P(x))}{dx^2}=-12[/tex] (maxima)

2,700 phones should the pear company produce and sell to maximize profit.