The spectral distribution of the radiation emitted by a diffuse surface may be approximated as follows. HW 2 Q2 (a) What is the total emissive power? (b) What is the total intensity of the radiation emitted in the normal direction and at an angle of 30° from the normal? (c) Determine the fraction of the emissive power leaving the surface in the directions π/4 ≤ θ ≤ π/2.

Respuesta :

Answer:

a) 2000 W/m²  ; b) 636.94 W/m².sr ; c) 0.5

Explanation:

a)

The formula for calculation of total emissive power is:

Total emissive power = E = [tex]\int\limits^\alpha_0[/tex] E'λdλ

                                   = [tex]\int\limits^a_0[/tex](0)dλ + [tex]\int\limits^b_a[/tex](100)dλ + [tex]\int\limits^c_b[/tex](200)dλ + [tex]\int\limits^d_c[/tex](100)dλ [tex]\int\limits^e_d[/tex](0)dλ

where a = 5; b = 10; c = 15; d = 20; e = 25

                                   = 0 +100(10-5) + 200(15-10) +100(20-15) + 0

                                   = 2000 W/m²

b)

The formula for total intensity of radiation is:

I[tex]_{e}[/tex] = E/π = 200/3.14 = 636.94 W/m².sr  

c)

Fo submissive power leaving the surface in range π/4 ≤θ≤π/2

[E(π/4 ≤θ≤π/2)]/E = [tex]\int\limits^f_0[/tex][tex]\int\limits^g_0[/tex][tex]\int\limits^i_h[/tex] Icosθsinθ dθdΦdλ

where f = infinity, g=2π, h=π/4, i=π/2

By simplifying, we get

                           = (-1/2)[cos(2π/2)-cos(2π/2)]

                           = -0.5(-1-0)

                           =0.5

The total emissive power is 2000 W/m². The total intensity of the radiation is 636.62  W/m². The fraction of the emissive power leaving the surface is 0.500

The emissive power is described as the entire amount of energy in a body from which a fraction of radiation is emitted as compared to a black body at the same temperature.

The total emissive power can be estimated by using the integral formula;

[tex]\mathbf{E = \int ^{\infty}_{o} \ E_{\lambda }(\lambda) \ \ d \lambda }[/tex]

where;

  • [tex]\mathbf{\ E_{\lambda }(\lambda) }[/tex] the energy emitted by the surface for the wavelength
  • dλ = change in wavelength

[tex]\mathbf{E = \int ^{\lambda_2}_{\lambda_1}E_{\lambda1}(\lambda) \ d\lambda+ \int ^{\lambda_3}_{\lambda_2}E_{\lambda2}(\lambda) \ d\lambda+ \int ^{\lambda_4}_{\lambda_3}E_{\lambda3}(\lambda) \ d\lambda}[/tex]

where;

  • [tex]\mathbf{E_{\lambda 1,2,3}}[/tex] = emissive power for wavelength
  • λ1,2,3,4 = wavelengths

replacing the values from the diagram, we have:

[tex]\mathbf{E = \int ^{10}_{5}(100) \ d\lambda+ \int ^{15}_{10}(200) \ d\lambda+\int ^{20}_{15}(100) \ d\lambda}[/tex]

[tex]\mathbf{E =\Big [100 \ \lambda \Big ]^{10}_{5}+ \Big [200 \ \lambda \Big ]^{15}_{10}+\Big [100 \ \lambda \Big ]^{20}_{15}}[/tex]

[tex]\mathbf{E =\Big [100 \ \Big ]({10-5)}+ \Big [200 \ \Big ]({15-10)}+\Big [100 \ \Big ]({20-15)}}[/tex]

E = (500 + 1000 + 500) W/m²

E = 2000 W/m²

b.

The total intensity of the radiation emitted is determined by using the formula:

[tex]\mathbf{I_c = \dfrac{E}{\pi}}[/tex]

[tex]\mathbf{I_c = \dfrac{2000 \ W/m^2}{\pi}}[/tex]

[tex]\mathbf{I_c =636.62 \ W/m^2}[/tex]

c.

The fraction of the emissive power leaving the surface is computed by using the formula:

[tex]\mathbf{\dfrac{E(\pi/4-\pi/2)}{E} = \dfrac{\int ^{2\pi}_{0} \ \int^{\pi/2}_{\pi/4 } I_e cos \theta sin \theta d \theta d \phi}{\pi I_e}}[/tex]

[tex]\mathbf{\dfrac{E(\pi/4-\pi/2)}{E} = \dfrac{\int^{\pi/2}_{\pi/4 } I_e cos \theta sin \theta d \theta \int ^{2\pi}_{0} \ d \phi}{\pi I_e}}[/tex]

[tex]\mathbf{\dfrac{E(\pi/4-\pi/2)}{E} = \dfrac{1}{\pi } \Big[\dfrac{sin^2 \theta }{2} \Big]^{\pi/2}_{\pi/4} \phi \BIg|^{2 \pi}_{0}}[/tex]

[tex]\mathbf{\dfrac{E(\pi/4-\pi/2)}{E} = \dfrac{1}{\pi}\Big [ \dfrac{1}{2} (1^2 -0.707^2)(2 \pi -0)\Big ]}[/tex]

[tex]\mathbf{\dfrac{E(\pi/4-\pi/2)}{E} = \dfrac{1}{\pi}\Big [0.2500755\times 6.283185307\Big ]}[/tex]

[tex]\mathbf{\dfrac{E(\pi/4-\pi/2)}{E} = 0.500}[/tex]

Learn more about emissive power here:

https://brainly.com/question/517565?referrer=searchResults