Respuesta :
Answer:
28 degree C
Explanation:
We are given that
[tex]T_1=4.00^{\circ}[/tex]
[tex]R_1=217.7 \Ohm[/tex]
[tex]R_2=215.1\Ohm[/tex]
[tex]\alpha=-5.00\times 10^{-4}C^{-1}[/tex]
We have to find the temperature on a spring day when resistance is 215.1 ohm.
We know that
[tex]\alpha(T_2-T_1)=\frac{R_2}{R_2}-1[/tex]
Using the formula
[tex]-5.00\times 10^{-4}(T_2-4)=\frac{215.1}{217.7}-1[/tex]
[tex]-5\times 10^{-4}(T_2-4)=0.988-1=-0.012[/tex]
[tex]T_2-4=\frac{0.012}{5\times 10^{-4}}=24[/tex]
[tex]T_2=24+4=28^{\circ}C[/tex]
Hence, the temperature on a spring day 28 degree C.
The Temperature on a spring day is 28°C.
The problem above can be solved using the formula below.
⇒ Formula:
- R = R'[1+α(T₂-T₁)]............... Equation 1
⇒ Where:
- R = New resistance
- R' = Original resistance
- α = Temperature coefficient of resistivity
- T₂ = Final Temperature
- T₁ = Initial Temperature.
From the question,
⇒ Given:
- R = 215.1 Ω
- R' = 217.7 Ω
- T₁ = 4.00 °C
- T₂ = ?
- α = -5.0×10⁻⁴ C⁻¹
⇒ Substitute these values into equation 1
- 215.1 = 217.7[1+(-5×10⁻⁴)(T₂-4)]
⇒ Solve for T₂
- [1+(-0.0005)(T₂-4)] = 215.1/217.7
- (-0.0005)(T₂-4) = 0.988-1
- (T₂-4) = -0.012/-0.0005
- (T₂-4) = 24
- T₂ = 24+4
- T₂ = 28°C
Hence, The Temperature on a spring day is 28°C.
Learn more about Temperature here: https://brainly.com/question/16559442