Respuesta :
Answer:
a) [tex] P(40 < X <60)= P(X<60) -P(X<40)= (1-0.16) -0.16 =0.68 [/tex]
b) [tex] P(30 < X <70)= P(X<70) -P(X<30)= (1-0.025) -0.025 =0.95 [/tex]
c) [tex] P(30< X <60)= P(X<60) -P(X<30)= (1-0.16) -0.025 =0.815[/tex]
d) [tex] P(X >60)=0.160[/tex]
Step-by-step explanation:
The empirical rule, also known as three-sigma rule or 68-95-99.7 rule, "is a statistical rule which states that for a normal distribution, almost all data falls within three standard deviations (denoted by σ) of the mean (denoted by µ)".
Let X the random variable who represent the measurements.
From the problem we have the mean and the standard deviation for the random variable X. [tex]E(X)=50, Sd(X)=10[/tex]
So we can assume [tex]\mu=50 , \sigma=10[/tex]
On this case in order to check if the random variable X follows a normal distribution we can use the empirical rule that states the following:
• The probability of obtain values within one deviation from the mean is 0.68
• The probability of obtain values within two deviation's from the mean is 0.95
• The probability of obtain values within three deviation's from the mean is 0.997
So we need values such that
[tex]P(X<\mu -\sigma)=P(X <40)=0.16[/tex]
[tex]P(X>\mu +\sigma)=P(X >60)=0.16[/tex]
[tex]P(X<\mu -2*\sigma)P(X<30)=0.025[/tex]
[tex]P(X>\mu +2*\sigma)P(X>70)=0.025[/tex]
[tex]P(X<\mu -3*\sigma)=P(X<20)=0.0015[/tex]
[tex]P(X>\mu +3*\sigma)=P(X>80)=0.0015[/tex]
Part a
We want this probability:
[tex] P(40 < X <60)[/tex]
Using the empirical rule probabilities we can do this:
[tex] P(40 < X <60)= P(X<60) -P(X<40)= (1-0.16) -0.16 =0.68 [/tex]
Part b
We want this probability:
[tex] P(30< X <70)[/tex]
Using the empirical rule probabilities we can do this:
[tex] P(30 < X <70)= P(X<70) -P(X<30)= (1-0.025) -0.025 =0.95 [/tex]
Part c
We want this probability:
[tex] P(30< X <60)[/tex]
Using the empirical rule probabilities we can do this:
[tex] P(30< X <60)= P(X<60) -P(X<30)= (1-0.16) -0.025 =0.815[/tex]
Part d
We want this probability:
[tex] P(X>60)[/tex]
Using the empirical rule probabilities and the complement rule we can do this:
[tex] P(X >60)=0.160[/tex]