Answer:
(A) [tex]A=\left[\begin{array}{ccc}10&20&40\end{array}\right][/tex]
(B) [tex]B=\left[\begin{array}{ccc}11&22&44\end{array}\right][/tex]
(C) [tex]A+B=\left[\begin{array}{ccc}21&42&84\end{array}\right][/tex]
Step-by-step explanation:
The manager ordered 10 lb of tomatoes, 20 lb of zucchini, and 40 lb of onions from a local farmer one week.
(A)
Matrix A represents the amount of each item ordered. It is 1 × 3 matrix.
Then matrix A is:
[tex]A=\left[\begin{array}{ccc}10&20&40\end{array}\right][/tex]
(B)
Next week the manager increases the order of all the products by 10%.
Then the amount of new orders are:
Tomatoes [tex]=10\times [1+\frac{10}{100}]=10\times1.10=11[/tex]
Zucchini [tex]=20\times [1+\frac{10}{100}]=20\times1.10=22[/tex]
Onions [tex]=40\times [1+\frac{10}{100}]=40\times1.10=44[/tex]
Th matrix B represents the amount of each order for the next week. Then matrix B is:
[tex]B=\left[\begin{array}{ccc}11&22&44\end{array}\right][/tex]
(C)
Add the two matrix A and B as follows:
[tex]A+B=\left[\begin{array}{ccc}10&20&40\end{array}\right]+\left[\begin{array}{ccc}11&22&44\end{array}\right]\\=\left[\begin{array}{ccc}(10+11)&(20+22)&(40+44)\end{array}\right]\\=\left[\begin{array}{ccc}21&42&84\end{array}\right][/tex]
The entries of the matrix (A + B) represent the amount of tomatoes, zucchini and onions ordered for two weeks.