Determine whether the improper integral converges or diverges, and find the value of each that converges.
∫^-1_-[infinity] ln |x| dx

Respuesta :

Answer:

It diverges.

Step-by-step explanation:

We are given the integral: [tex]\int\limits^{-1}_{-\infty} \ln |x| dx[/tex]

[tex]\int\limits^{-1}_{-\infty} \ln |x| dx=\int\limits^{-1}_{-\infty} \ln (-x) dx=\\\\= \lim_{t \to \infty} \int\limits^{-1}_{-t} \ln (-x) dx= \lim_{t \to \infty}( x(\ln \left(-x\right)-1))|^{-1}_{-t}=1-\infty=-\infty[/tex]

So it is divergent.