Find the volume of the solid of revolution formed by rotating about the x--axis the region bounded by the given curves.
f(x)=√x+5, y=0, x=1, x=3.

Respuesta :

Answer:

[tex]14\pi[/tex]

Step-by-step explanation:

We are given: [tex]f(x) = \sqrt{x+5}[/tex]

To calculate the desired volume, we need to use the volume property of integral.

[tex]V=\pi\int\limits^3_1(\sqrt{x+5})^2dx=\pi\int\limits^3_1(x+5)dx=\pi(\frac{x^2}{2}+5x)|^3_1=\pi(\frac{9}{2}+15-\frac{1}{2}-5)=14\pi[/tex]