Respuesta :

If you're looking for the solution to the system of equations, here's how we solve using substitution
We know that y = x - 1, so we can plug that into the first equation giving
2x - 3(x-1) = -1
Now distribute the 3 giving 2x - 3x + 3 = -1. After combining like terms we get -x + 3 = -1. Now subtract 3 from both sides, -x = -4, and multiply both sides by -1 to make x positive. x = 4
Now we can plug that into the second equation to get y
y = x - 1, and we know that x = 4, so y = 4 - 1, y = 3. The solution is (4, 3)
2x - 3y = -1
         y = x - 1

             2x - 3y = -1
     2x - 3(x - 1) = -1
2x - 3(x) + 3(1) = -1
       2x - 3x + 3 = -1
               -x + 3 = -1
                    - 3   - 3
                     -x = -4
                     -1    -1
                      x = 4

      y = x - 1
      y = 4 - 1
      y = 3
(x, y) = (4, 3)