Respuesta :
This is an example of difference of two squares meaning both of these variables are perfect squares. So when you factor this out you get (3x-4)(3x+4). Then since there's an equal sign you have to solve it. So it'd be 3x=4 divide it by 3 and you get 4/3 and 3x=-4 divide again you get -4/3. Your two final answers are 4/3 and -4/3.
[tex]9x^2-16=0[/tex]
[tex]9x^2-16:[/tex]
[tex]9x^2-16=(3x+4)(3x-4)[/tex]
[tex](3x+4)(3x-4) :[/tex]
Using the zero factor participle:
Solve: [tex](3x+4) = 0 : x = - \frac{4}{3} [/tex]
[tex] (3x-4) = 0 : x = \frac{4}{3} [/tex]
The final solutions to the quadratic equation are:
[tex]x= -\frac{4}{3} [/tex] and [tex]x = \frac{4}{3} [/tex]
hope this helps!
[tex]9x^2-16:[/tex]
[tex]9x^2-16=(3x+4)(3x-4)[/tex]
[tex](3x+4)(3x-4) :[/tex]
Using the zero factor participle:
Solve: [tex](3x+4) = 0 : x = - \frac{4}{3} [/tex]
[tex] (3x-4) = 0 : x = \frac{4}{3} [/tex]
The final solutions to the quadratic equation are:
[tex]x= -\frac{4}{3} [/tex] and [tex]x = \frac{4}{3} [/tex]
hope this helps!