Respuesta :

For this case we have that by definition, the slope of a line is given by:

[tex]m = \frac {y_ {2} -y_ {1}} {x_ {2} -x_ {1}}[/tex]

Where:

[tex](x_ {1}, y_ {1})[/tex] and [tex](x_ {2}, y_ {2})[/tex] are two points through which the line passes.

Line 1:

[tex](x_ {1}, y_ {1}) :( 3,2)\\(x_ {2}, y_ {2}): (- 3,2)[/tex]

Thus, the slope is:

[tex]m = \frac {2-2} {- 3-3} = \frac {0} {- 6} = 0[/tex]

So, the slope is 0.

Line 2:

[tex](x_ {1}, y_ {1}): (- 1, -1)\\(x_ {2}, y_ {2}): (- 1,3)\\m = \frac {3 - (- 1)} {- 1 - (- 1)} = \frac {3 + 1} {- 1 + 1}[/tex]

The slope is undefined!

Line 3:

[tex](x_ {1}, y_ {1}) :( 2, -3)\\(x_ {2}, y_ {2}): (- 3, -3)\\m = \frac {-3 - (- 3)} {- 3-2} = \frac {-3 + 3} {- 5} = \frac {0} {- 5} = 0[/tex]

So, the slope is 0.

Answer:

[tex]m = 0[/tex]

m undefined

[tex]m = 0[/tex]