Respuesta :

Answer:

a) [tex]4.5 \times 10^{11}[/tex]

b) [tex]3.5 \times 10^{3}[/tex]

Step-by-step explanation:

a) We have to simplify the below expression in standard form.

The expression is [tex](5\times 10^{3}) \times (9 \times 10^{7})[/tex]

Now, [tex](5\times 10^{3}) \times (9 \times 10^{7})[/tex]

= [tex](9 \times 5) \times (10^{3} \times 10^{7})[/tex]

= [tex]45 \times 10^{(3 + 7)}[/tex] {Since [tex]a^{b} \times a^{c} = a^{(b + c)}[/tex]}

= [tex]45 \times 10^{10}[/tex]

= [tex]4.5 \times 10^{11}[/tex] (Answer)

b)  We have to simplify the below expression in standard form.

The expression is [tex](7\times 10^{5}) \div (2 \times 10^{2})[/tex]

Now, [tex](7\times 10^{5}) \div (2 \times 10^{2})[/tex]

= [tex](7 \div 2) \times (10^{5} \div 10^{2})[/tex]

= [tex]3.5 \times 10^{(5 - 2)}[/tex] {Since [tex]a^{b}\div a^{c} = a^{(b - c)}[/tex]}

= [tex]3.5 \times 10^{3}[/tex] (Answer)