Please help, WILL MARK BRANLIEST

Answer:
The perimeter of triangle is 36 units
Step-by-step explanation:
Theory:
The distance between two point is given by
L=[tex]\sqrt{(X2-X1)^{2}+(Y2-Y1)^{2} }[/tex]
As shown in figure,
Let,
Coordinate of the point A is (0,0)
Coordinate of the point B is (10,0)
Coordinate of the point C is (5,12)
Now, Perimeter of triangle is given by
Perimeter=AB+BC+AC
The length of AB:
AB=[tex]\sqrt{(X2-X1)^{2}+(Y2-Y1)^{2} }[/tex]
AB=[tex]\sqrt{(10-0)^{2}+(0-0)^{2} }[/tex]
AB=[tex]\sqrt{(10)^{2}}[/tex]
AB=10 units
The length of BC:
BC=[tex]\sqrt{(X2-X1)^{2}+(Y2-Y1)^{2} }[/tex]
BC=[tex]\sqrt{(5-10)^{2}+(12-0)^{2} }[/tex]
BC=[tex]\sqrt{(5)^{2}+(12)^{2}}[/tex]
BC=13 units
The length of AC:
AC=[tex]\sqrt{(X2-X1)^{2}+(Y2-Y1)^{2} }[/tex]
AC=[tex]\sqrt{(0-5)^{2}+(0-12)^{2} }[/tex]
AC=[tex]\sqrt{(5)^{2}+(12)^{2}}[/tex]
AC=13 units
Thus, The perimeter of triangle is,
Perimeter=AB+BC+AC
Perimeter=10+13+13
Perimeter=36 units