Answer:
CD = 6.52 cm
Step-by-step explanation:
It is given that the cone is right angled cone with, a slant height of 16 cm, and a radius of 7 cm.
By, pythagoras theorm,
[tex]BE^{2} = AE^{2} + AB^{2}[/tex]
[tex]16^{2} = AE^{2} + 7^{2}[/tex]
[tex]AE^{2}= 256-49 = 207[/tex]
[tex]AE = \sqrt{207}= 14.387 cm[/tex]
Thus, EC = 14.387 - 1 = 13.387 cm,
It can be seen that triangles ABE and CDE are similar.
Thus,
[tex]\frac{AE}{EC} = \frac{7}{CD}[/tex]
[tex]\frac{14.387}{13.387} = \frac{7}{CD}[/tex]
CD = 6.513 cm ≈ 6.52 cm