Respuesta :

Answer:

1) [tex]sin(90-x) = 49.68[/tex]

2)sin(sin(x)) = 0.0154

Step-by-step explanation:

1) sin(90-x) can be written as cos(x).

 It is given that, cos(cos(x)) = [tex]\frac{11}{17}[/tex]

 Taking [tex]cos^{-1}[/tex] on both the sides,

[tex]cos^{-1}(cos(cos(x))) = cos^{-1}(\frac{11}{17})[/tex]

[tex]cos(x) = cos^{-1}(\frac{11}{17}) = 49.68[/tex]

Thus,

[tex]cos(x) = sin(90-x) = 49.68[/tex]

2))[tex]cos(cos(x)) = \frac{12}{13}[/tex]

   [tex]cos(x) = cos^{-1}(\frac{12}{13}) = 22.631 degrees = 0.394 radians[/tex]

Applying,

[tex]sin(x) = \sqrt{1-cos^{2}(x) }[/tex],

sin(x) = [tex]\sqrt{1-(0.391)^2}  }[/tex]

sin(x) = 0.884

sin(sin(x)) = sin(0.884) = 0.0154