Does anyone know the answer for these two questions?

Answer:
1) [tex]sin(90-x) = 49.68[/tex]
2)sin(sin(x)) = 0.0154
Step-by-step explanation:
1) sin(90-x) can be written as cos(x).
It is given that, cos(cos(x)) = [tex]\frac{11}{17}[/tex]
Taking [tex]cos^{-1}[/tex] on both the sides,
[tex]cos^{-1}(cos(cos(x))) = cos^{-1}(\frac{11}{17})[/tex]
[tex]cos(x) = cos^{-1}(\frac{11}{17}) = 49.68[/tex]
Thus,
[tex]cos(x) = sin(90-x) = 49.68[/tex]
2))[tex]cos(cos(x)) = \frac{12}{13}[/tex]
[tex]cos(x) = cos^{-1}(\frac{12}{13}) = 22.631 degrees = 0.394 radians[/tex]
Applying,
[tex]sin(x) = \sqrt{1-cos^{2}(x) }[/tex],
sin(x) = [tex]\sqrt{1-(0.391)^2} }[/tex]
sin(x) = 0.884
sin(sin(x)) = sin(0.884) = 0.0154