Respuesta :

Question:

What is the surface area of a cone using pi for 15cm for height and 3 cm for radius?

Answer:

The surface area of a cone = 172.1034 [tex]cm^2[/tex]

Step-by-step explanation:

Given:

Height of the cone = 15 cm

Radius of the cone = 3 cm

To Find:

Surface area of a cone =?

Solution:

The surface area of a cone

=> curved surface area + the area of the base

=>[tex]\pi r^2 + \pi L r[/tex] ------------------------------------------------(1)

where

r denotes the radius of the base of the cone, and

L denotes the slant height of the cone.

The curved surface area is also called the lateral area.

Let us first find the slant height:

[tex]L = \sqrt{r^2 +h^2}[/tex]

[tex]L = \sqrt{3^2 +15^2}[/tex]

[tex]L = \sqrt{9 +225}[/tex]

[tex]L = \sqrt{234}[/tex]

[tex]L =3 \sqrt{26}[/tex]

Substituting the values in (1)

=>[tex](\pi)( 3^2) + (\pi) (3\sqrt{26})(3)[/tex]

=>[tex](\pi)( 9) + (\pi) (3\sqrt{26})(3)[/tex]

=>[tex](3.14)( 9) + (3.14) (3\times 5.09})(3)[/tex]

=>[tex](3.14)( 9) + (3.14) (3\times 5.09})(3)[/tex]

=>[tex]( 28.26) + (3.14) (15.27)(3)[/tex]

=>[tex]( 28.26) + (143.8434)[/tex]

=> 172.1034