Answer: Option b.
Step-by-step explanation:
Let's check each triangle with the Pythagorean Theorem:
[tex]a^2=b^2+c^2[/tex]
Where "a" is the hypotenuse (the longest side) and "b" and "c" are the legs of the right triangle.
a) Given:
[tex]a=5\ cm\\b=3\ cm\\c=4\ cm[/tex]
You get:
[tex](5 cm)^2=(3 cm)^2+(4 cm)^2\\\\25\ cm^2=25\ cm^2[/tex]
(This is a right triangle)
b) Given:
[tex]a=12\ ft\\b=8\ ft\\c=6\ ft[/tex]
You get:
[tex](12\ ft)^2=(8\ ft)^2+(6\ ft)^2\\\\144\ ft^2\neq 100\ ft^2[/tex]
(This is not a right triangle)
c) Given:
[tex]a=45\ cm\\b=36\ cm\\c=27\ cm[/tex]
You get:
[tex](45\ cm)^2=(36\ cm)^2+(27\ cm)^2\\\\2,025\ cm^2=2,025\ cm^2[/tex]
(This is a right triangle)