Cost of one hosta is $5 and cost of one geranium is $9.
Step-by-step explanation:
Let,
Cost of one hosta = x
Cost of one geranium = y
According to given statement;
13x+3y=92 Eqn 1
6x+14y=156 Eqn 2
Multiplying Eqn 1 by 6
[tex]6(13x+3y=92)\\78x+18y=552\ \ \ Eqn\ 3[/tex]
Multiplying Eqn 2 by 13
[tex]13(6x+14y=156)\\78x+182y=2028\ \ \ Eqn\ 4[/tex]
Subtracting Eqn 3 from Eqn 4
[tex](78x+182y)-(78x+18y)=2028-552\\78x+182y-78x-18y=1476\\164y=1476[/tex]
Dividing both sides by 164
[tex]\frac{164y}{164}=\frac{1476}{164}\\y=9[/tex]
Putting y=9 in Eqn 2
[tex]6x+14(9)=156\\6x+126=156\\6x=156-126\\6x=30[/tex]
Dividing both sides by 6
[tex]\frac{6x}{6}=\frac{30}{6}\\x=5[/tex]
Cost of one hosta is $5 and cost of one geranium is $9.
Keywords: linear equation, subtraction
Learn more about linear equations at:
#LearnwithBrainly