Respuesta :

Answer:

Integration of I= [tex]\int {x^{n}logx \, dx[/tex]=[tex][\frac{logx}{n+1} x^{(n+1)}]-[\frac{1}{(n+1)^{2}}x^{(n+1)}][/tex]

Step-by-step explanation:

Given integral is I= [tex]\int {x^{n}logx \, dx[/tex]

Take logx=t

[tex]x=e^{t}[/tex]

[tex]x^{n}=e^{nt}[/tex]

[tex]\frac{1}{x} dx=dt[/tex]

[tex]dx=xdt[/tex]

[tex]dx=e^{t}dt[/tex]

I= [tex]\int (e^{nt})(t)(e^{t})\, dt[/tex]

I= [tex]\int (e^{(n+1)t})(t)\, dt[/tex]

Using integration by part,

[tex]I= (t)\int [e^{(n+1)t}]\, dt-\int[\frac{d}{dt}{t}\times\int (e^{(n+1)t})]\\\\I= (t) [\frac{1}{n+1}e^{(n+1)t}]-\int[1\times\frac{1}{n+1}e^{(n+1)t}]\,dt\\\\I=[\frac{t}{n+1}e^{(n+1)t}]-[\frac{1}{(n+1)^{2}}e^{(n+1)t}][/tex]

Writing in terms of x

I=[tex][\frac{t}{n+1}e^{(n+1)t}]-[\frac{1}{(n+1)^{2}}e^{(n+1)t}][/tex]

I=[tex][\frac{logx}{n+1}e^{(n+1)logx}]-[\frac{1}{(n+1)^{2}}e^{(n+1)logx}][/tex]

I=[tex][\frac{logx}{n+1}e^{logx^{(n+1)}}]-[\frac{1}{(n+1)^{2}}e^{logx^{(n+1)}}][/tex]

I=[tex][\frac{logx}{n+1} x^{(n+1)}]-[\frac{1}{(n+1)^{2}}x^{(n+1)}][/tex]

Thus,

Integration of I= [tex]\int {x^{n}logx \, dx[/tex]=[tex][\frac{logx}{n+1} x^{(n+1)}]-[\frac{1}{(n+1)^{2}}x^{(n+1)}][/tex]