Respuesta :

Answer:

The sequence is given by,

f(n) = [tex]256 \times (1.25)^{(n - 1)}[/tex]

Step-by-step explanation:

Let the geometric sequence has 1st term = b and common ratio = r

so, the sequence is,

f(n) = [tex]b \times r^{(n - 1)}[/tex] ----------------------(1)

According to the question,

[tex]br = 320[/tex] ---------------------(2)  and,

[tex]b \times r^{(5 - 1)}[/tex] = 625

⇒[tex]b \times r^{4}[/tex] = 625 --------------(3)

Now, dividing (3) by (2), we get,

[tex]r^{3} = \frac {625}{320}[/tex]

⇒[tex]r^{3} = \frac {125}{64}[/tex]

⇒[tex] r = \frac {5}{4}[/tex]

⇒ r = 1.25 -----------------------------------(4)

Now, from (2) and (4), we get,

b = [tex]\frac {320}{1.25}[/tex]

⇒ b = [tex]320 \times \frac {4}{5}[/tex]

⇒ b = 256-----------------(5)

So, from (4) and (5), the sequence is given by,

f(n) = [tex]256 \times (1.25)^{(n - 1)}[/tex]

Answer:

256(-5/4)^n-1