The center of a hyperbola is (-5,8). The length of the conjugate axis is 6 units, and the length of the transverse axis is 14 units. The transverse axis is parallel to the y axis.

What is the equation of the hyperbola in standard form?

Respuesta :

Answer:

[tex](\frac{x+5}{3}) ^{2}+ (\frac{y-8}{7} )^{2}  =1[/tex]

Step-by-step explanation:

  • IMPORTANT FORMULA: the standard equation of a hyperbola whose transverse axis is parallel to the y axis is:

[tex](\frac{x-h}{a}) ^{2}+ (\frac{y-k}{b} )^{2}  =1[/tex]

where, (h,k) : center  of the hyperbola

a : semi conjugate axis [ length of conjugate axis/2]

b: semi transverse axis [ length of transverse axis/2]

  • so, here a=3, b=7, [h,k]=[-5,8]
  • by substituting these values in the above given formula,
  • the equation of the hyperbola in standard form is :

[tex](\frac{x-(-5)}{3}) ^{2}+ (\frac{y-8}{7} )^{2}  =1[/tex]

[tex](\frac{x+5}{3}) ^{2}+ (\frac{y-8}{7} )^{2}  =1[/tex]