A cylindrical cork (area A, length L, density pc) is floating in a liquid of density Pw with only a part of its length L submerged in the liquid. If the cork is pushed down by a small distance Xm and then let go, what is the frequency f of the subsequent bobbing simple harmonic motion? Express your answer in terms of the quantities Pc, Pw, A, L, and g.

Respuesta :

Answer:

Explanation:

Given

[tex]\rho _c=[/tex]density of cork

[tex]\rho _w=[/tex]density of water

L=Length of cylinder

If initially x length is under water

At equilibrium

[tex]\rho _wAxg-\rho _cALg=0[/tex]

After giving [tex]X_m[/tex] push

[tex]\rho _wAg(x+X_m)-\rho _cALg=\rho _cALa[/tex]

where a  is acceleration of system

and [tex]a=\frac{\mathrm{d^2} X_m}{\mathrm{d} t^2}[/tex]

[tex]\rho _wAgX_m=\rho _cAL\frac{\mathrm{d^2} X_m}{\mathrm{d} t^2}[/tex]

[tex]\frac{\mathrm{d^2} X_m}{\mathrm{d} t^2}=\frac{\rho _wAg}{\rho _cAL}[/tex]

thus [tex]\omega ^2=\frac{\rho _wg}{\rho _cL}[/tex]

thus [tex]\omega =\sqrt{\frac{\rho _wg}{\rho _cL}}[/tex]

and [tex]2\pi f=\omega [/tex]

[tex]f=\frac{\sqrt{\frac{\rho _wg}{\rho _cL}}}{2\pi }[/tex]