Answer:
[tex]\omega_{f}=5.787\ rpm[/tex]
Explanation:
given,
radius of merry - go - round = 2 m
mass of the disk = 250 kg
initial angular speed = 0 rpm
speed = 5 m/s
mass of Joey = 40 kg
[tex]I_{disk} = \dfrac{1}{2}MR^2[/tex]
[tex]I_{disk} = \dfrac{1}{2}\times 250 \times 2^2[/tex]
[tex]I_{disk} = 500 kg.m^2[/tex]
initial angular momentum of the system
[tex]L_i = I\omega_i + mvR[/tex]
[tex]L_i =500 \times 0 + 40 \times 5 \times 2[/tex]
[tex]L_i =400\ kg.m^2/s[/tex]
final angular momentum of the system
[tex]L_f = (I_{disk}+mR^2)\omega_{f}[/tex]
[tex]L_f = (500 + 40\times 2^2)\omega_{f}[/tex]
[tex]L_f= (660)\omega_{f}[/tex]
from conservation of angular momentum
[tex]L_i = L_f[/tex]
[tex]400= (660)\omega_{f}[/tex]
[tex]\omega_{f}=0.606 \times \dfrac{60}{2\pi}[/tex]
[tex]\omega_{f}=5.787\ rpm[/tex]