Answer:
3893.99675 N
Explanation:
[tex]F_1[/tex] = 125 N
[tex]A_1[/tex] = [tex]\pi 1.075^2[/tex]
[tex]A_2[/tex] = [tex]\pi 6^2[/tex]
From Pascal's law
[tex]\dfrac{F_1}{A_1}=\dfrac{F_2}{A_2}\\\Rightarrow F_2=\dfrac{F_1\times A_2}{A_1}\\\Rightarrow F_2=\dfrac{125\times 6^2}{1.075^2}\\\Rightarrow F_2=3893.99675\ N[/tex]
The force that the liquid exerts on the bottom of the bottle is 3893.99675 N