In ΔOPQ, m∠O = (3x+12)^{\circ}(3x+12)

, m∠P = (4x+4)^{\circ}(4x+4)

, and m∠Q = (x+12)^{\circ}(x+12)

. Find m∠P

Respuesta :

Answer:

The measure of angle P is 80 degrees

Step-by-step explanation:

we know that

The sum of the interior angles in a  triangle must be equal to 180 degrees

In this problem we have that

[tex]m\angle O+m\angle P+m\angle Q=180^o[/tex]

substitute the given values

[tex](3x+12)^o+(4x+4)^o+(x+12)^o=180^o[/tex]

solve for x

[tex](8x+28)=180[/tex]

[tex]8x=180-28[/tex]

[tex]8x=152[/tex]

[tex]x=19[/tex]

Find the measure of angle P

[tex]m\angle P=(4x+4)^o[/tex]

substitute the value of x

[tex]m\angle P=(4(19)+4)=80^o[/tex]