Answer:
A. 14 min
B . 0.995 M
Explanation:
A.
Using integrated rate law for first order kinetics as:
[tex][A_t]=[A_0]e^{-kt}[/tex]
Where,
[tex][A_t][/tex] is the concentration at time t
[tex][A_0][/tex] is the initial concentration
Given:
The final concentration is dropped to 6.25 % of the initial concentration. SO,
[tex]\frac {[A_t]}{[A_0]}[/tex] = 0.0625
k = [tex]3.30\times 10^{-3}\ s^{-1}[/tex]
So,
[tex]\frac {[A_t]}{[A_0]}=e^{-k\times t}[/tex]
[tex]0.0625=e^{-3.30\times 10^{-3}\times t}[/tex]
[tex]\ln \left(0.0625\right)=\ln \left(e^{-3.3\times \:10^{-3}t}\right)[/tex]
[tex]\ln \left(0.0625\right)=-3.3\times \:10^{-3}t[/tex]
[tex]t=840.18\ s[/tex]
Also, 1 s = 1/60 minutes.
So, [tex]t=\frac{840.18}{60}=14\ min[/tex]
14 minutes it takes for the concentration of the reactant to drop to 6.25% of the original concentration.
B.
(a) Half life expression for second order kinetic is:
[tex]t_{1/2}=\frac{1}{k[A_o]}[/tex]
Where,
[tex][A_o][/tex] is the initial concentration = ?
k is the rate constant = [tex]1.70\times 10^{-3}[/tex] M⁻¹s⁻¹
Half life = 296 s
So,
[tex]296=\frac{1}{1.70\times 10^{-3}\times [A_o]}[/tex]
[tex]296=\frac{1000}{1.7[A_o]}[/tex]
[tex][A_o]=\frac{1250}{629}[/tex]
[tex][A_o]=1.99\ M[/tex]
Half life is the time at which the concentration of the reactant reduced to half. So, concentration remains = [tex]\frac{1.99}{2}\ M[/tex] = 0.995 M