Respuesta :

Answer:

[tex]y=3x+2[/tex]

Step-by-step explanation:

Given equation:

[tex]y=3x+1[/tex]

To find the equation of line parallel to the line of the given equation and passes through point (-2,4).

Applying slope relationship between parallel lines.

[tex]m_1=m_2[/tex]

where [tex]m_1[/tex] and [tex]m_2[/tex] are slopes of parallel lines.

For the given equation in the form [tex]y=mx+b[/tex] the slope [tex]m_2[/tex]can be found by comparing [tex]y=3x+1[/tex] with standard form.

∴ [tex]m_2=3[/tex]

∴ [tex]m_1=3[/tex]

The line passes through point (-2,4)

Using point slope form:

[tex]y_-y_1=m(x_-x_1)[/tex]

Where [tex](x_1,y_1)\rightarrow (-2,4)[/tex] and [tex]m=m_1=3[/tex]

So,

[tex]y-(-4)=3(x-(-2))[/tex]

Simplifying

[tex]y+4=3(x+2)[/tex]

Using distribution.

[tex]y+4=(3x)+(2\times 3)[/tex]

[tex]y+4=3x+6[/tex]

Subtracting 4 from both sides.

[tex]y+4-4=3x+6-4[/tex]

[tex]y=3x+2[/tex]

Thus the equation of line in standard form is given by:

[tex]y=3x+2[/tex]  (Answer)